United States Patent

US009235496B2

(12) (10) Patent No.: US 9,235,496 B2
Grondin (45) Date of Patent: Jan. 12, 2016
(54) DOMAIN CENTRIC TEST DATA g,izg,g% g%: iggg gh_adian etlal' ~~~~~~~~~~~~~~~ ;(1);;;2;
K A ritton et al. ...
GENERATION 8,458,164 B2* 6/2013 Paytonetal. 707/713
. . . 2012/0173587 Al 7/2012 Clifford et al.
(71) Applicant: Informatica LLC, Redwood City, CA 2013/0254171 Al 9/2013 Grondin et al.
(as) 2014/0122445 Al* 5/2014 Hashimoto etal. 707/690
(72) Inventor: Richard Grondin, Sainte-Julie (CA) FOREIGN PATENT DOCUMENTS
(73) Assignee: Informatica LL.C, Redwood City, CA P 2001-256076 A * 9/2001
(US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this European Extended Search Report, Furopean Application No.
patent is extended or adjusted under 35 11189_279'4’ Jun'“B’ 2015, 7 pages. . . .
U.S.C. 154(b) by 63 days O’Neil, P. et al., “Multi-Table Joins Through Bitmapped Join Indi-
e : ces,” SIGMOD Record, Sep. 1995, pp. 8-11, vol. 24, No. 3.
(21) Appl. No.: 14/056,868 * cited by examiner
(22) Filed: Oct. 17,2013 Primary Examiner — Christopher McCarthy
65) Prior Publication Dat (74) Attorney, Agent, or Firm — Fenwick & West LLP
rior Publication Data
57 ABSTRACT
US 2015/0113330 A1 Apr. 23,2015 7))))
A test data extraction and persistence technique that relies on
(51) Int.CL a data domain based storage infrastructure is disclosed. In
GOGF 1100 (2006.01) operation, a test data server receives a test data query that
GOGF 11/36 (2006.01) specifies selection parameters for selecting test data and any
(52) U.S.CL transformation operations to be performed on the test data.
CPC ... GOGF 11/3684 (2013.01); GOGF 11/36 The test data server identifies domains associated with the
(2013.01) selection parameters and traverses the tables in the database
(58) Field of Classification Search based on the identified domains to extract test data that satis-
CPC GOGF 11/3684 fies the selection parameters. The test data server optionally
See apphcatlon file forcomplete ‘search history. performs transformation operations, such as masking opera-
' tions, specified by the test data query on the extracted data.
(56) References Cited The identified domains are stored such that test data that

U.S. PATENT DOCUMENTS

satisfies the test data query may be extracted from the data-
base repetitively without reevaluating the test data query each

time.
6,571,232 B1* 5/2003 Goldberg et al.
7,606,792 B2* 10/2009 Cunningham et al. 20 Claims, 11 Drawing Sheets
f 100
- Domain ldentifier
110
Da!i;:zase Entity Selector o

Definition Generation Module 108

Test Data

l—>| Inventory

114

Transformation
Domain Operator
Metadata 118

Inventory Browser
124

104

Data Extractor
120

Test Data
Extraction Module

Entity Map
Operator
126

Test Data Manipulation
Module
122

Test Data Server 108

US 9,235,496 B2

Sheet 1 of 11

Jan. 12, 2016

U.S. Patent

213

01 JoAseg eleq Jsay
F44 DY
ainpop BINPOY UoIPRAX
uonendiuely ejeq 1se] ejeqisel
ocT ST
loresado ocl
den Anug Jopeiixg Ble(
— T
Jesmos vw\ﬁo usAu jojesado
g Aojusau UOIjBULIOJSURI |

N

ol
BjEpEJop

Aoyusau
ejeqi1sol

<>

oo—..\

O} INpPOW UCnEIsUSL) Uoliuge

1op8jes AU

Jaynusp) uewoq

T=00 (el

>

N

c0t

eseqeleq

<>

U.S. Patent Jan. 12, 2016 Sheet 2 of 11 US 9,235,496 B2

f 102
Customer Table 202 Bili Table 204
CustidName |City|SSN TrxDate [Custid]| -Biilld Total |CreditCard
1 6 4 1 1 3 1 7 5
2 5 2 6 1 6 2 5 1
3 7 1 4 1 5 3 1 4
4 1 4 7 2 6 4 4 1
21& 5] 2| 3] 3 2 4 5| 3 3
6 4 1 P 3 1 9] 2 0
7 3 31 5 3 4 7 6 3
212" \214
Line Item Table 206 Product Table 208
Bilild][ProductiD Jate Productid | Price
1 11 4 1 2
1 5] 2 220 5 6
2 3| 3 N~ 3 5
2 2[2 2 3
216 3 41 1 5 1
— 4 3l 3 8 2
5 20 2
5 41 2
5 5] 1
6 41 2
7 2] 3
\-218

FIG. 2A

US 9,235,496 B2

Sheet 3 of 11

Jan. 12, 2016

g2 "Oid
L2€ L osor |2
16c__[9 | [S%0v]9 S01d |9 reg kel boo) < i
20z |§ by | G ¥0ld | 906 59 /87| G MIN S
A ZS0F | © Zold [€ .
9G¥ €21 ¢al| € JIN € SHOA MBN [€
8 le | LSOy l¢ a1 111866 /1] ¢ 8N |2 [BR1UON [2
el —~L_| [0S0 1) ookt 068 95y €L |1 VINT) uopuoT [}
anjep | dig anjeA | aid anjeA Iﬂ_m ERITNGIE] EREINGIE] anjeA g3
ppsnNy @ plilig a pponpoid = = =
NSS a aweN g Auo™a
0zz J vzZ
vzl | 2
z o ¥8 9
TR 9/96 0688 59/8 9/86 | S 1S g
- ; o Ty 00E0 0200 1000 100G | ¥ 09 v
- c 9 e LZEV LZEV LZEY LEev | € ag 3 RARAN AR
> = c z LZEV LZEV L2V Leev |2 Zl Z v1212102] 2
3 3 = L 6000 GOS0 Zevy ViV | I g L ZLZLzloz| 1
oneA | i anfeA|aia TN E EORE] N GIE]
90 ad aolid a pledipasd @ el g ale@l g

U.S. Patent

rA#4 \

U.S. Patent

Jan. 12, 2016 Sheet 4 of 11

US 9,235,496 B2

Receive test data query

302

v

ldentify domains associated with the
selection parameters

304

!

Select entity identifiers for each domain
that satisfy selection parameters

306
g

v

Generate test data definition 307

Generate primary entity selection map(s) | |

based on the selected entity identifiers

308

v

Apply primary entity selection map(s) o
tables to generate row selection map(s)

310
L/

v

Generate driving entity selection map(s)
based on row selection map(s)

312

Create test data definition object based on
driving entity selection map(s)

314
L/

(-

v

Execute test data defintion to exiract test
data

316
g

FIG.3

U.S. Patent Jan. 12, 2016 Sheet 5 of 11 US 9,235,496 B2
402
il
Test Data Query: Extract all data associated with City: "Montreal” or “New York” or
“Paris”
f224 /226
D_City
ESV| EID[Value D_Custid D_Billld | B_Productid
0| 1| London ESV| EID|Value| |ESV| EID|Value| ESV| EID|Value
1] 2| Montreal 1 1 12 0| 1] 4040 0| 1[P100
1 3| New York 1 2 87 0 2] 4041 1 2| P101
1]l 4| Paris 0| 3] 123 1] 3| 4052 0| 3[P102
\ 1] 4| 187 0| 4] 4053 1/ 4/ P103
404 1 5| 202 1 5| 4054 1 5[P104
0| 6 291 1|| 6| 4055 0| 6[P105
117|321 17140561 “—410
— 406 —408
/ 412 Bill Table 204 414\ Line Item Table 208
RSV| | TrxDate|Custid|Billld [Total|CreditCard RSV||Billld|ProductiD|Qte
0 1 3 1 7 5 0 1 1 4
0 1 6 2 5 1 0 1 5| 2
1 1 5 3 1 4 0 2 3[3
0 2 5 4 4 1 0 2 2| 2
1 2 4 5 3 3 1 3 41 1
1 3 1 6 2 0 0 4 3 3
1 3 4 7 6 3 1 5 2] 2
1 5 41 2
1 5 5 1
Customer Table 202 1 6 4 2
RSV| [Custid|Name|[City[SSN 7 2| 3
: ; g g g Product Table 208
ol 3 71 1 4 RSV| Productid|Price
0 1 4
1 4 1 4 7 1 5 5
1 5 2 31 3 0 3 5
0 6 4] 1 2 1 4 3
1 7
\ 3] 3 5§ 1 5 .
416 0 6 2
\418

FIG. 4A

U.S. Patent Jan. 12, 2016 Sheet 6 of 11 US 9,235,496 B2
420
yall
Bili
TrxDate |Custid Billld | Total CreditCard
20121212 202 4052 6 5C01 0001 0020 0300
20121214 187 4054 56 4321 4321 4321 4321
20121215 12 | 4055 12
20121215| 187 | 4056 84 4321 4321 4321 4321
Lineitem Product
Bilild | ProductiD | Qte Productid Price
4052 P103 1 P101 21
4054 P101 2 P103 8
4054 P103 2 P104 _ 2
4054 P104 1
4055 P103 2
4056 P101| 4
Customer
Custid Name | City SSN
12 Mr X Paris 123 456 890
87 Mrw Montreal 876 289 771
187 Mr A Paris 999 123 654
202 Mr B New York | 182 123 456
321 MrF New York | 487 654 908

FIG. 4B

U.S. Patent Jan. 12, 2016 Sheet 7 of 11 US 9,235,496 B2

502
Test Data Query: Extract all data associated with City: “Montreal” or “New York” or
“Paris® AND Total Bill > 100 Sensitive Data Masked and Data Aged by 1 year
224 . 7226
4 D_Custid D_Billld D_Productid
D City ESV | EID|Value| ESV EID|Value| |ESV | EID|Value
ESV|[EID[Value 0 1 12 0] 1] 4050 0] _1[P100
0| 1|London ||| O/ 2! 87 0| 2| 4051 1 2[P101
1| 2[Montreal 0/ 3] 123 0| 3] 4052 0l 3[Pi02
1|3 New York 1/ 4] 187 0| 4] 4053 1] 4] P103
1 4| Paris 0 5 202 5| 4054 1 5[P104
=504 0 6] 291 0 6| 4055 0 6| P105
0/ 71 321 1/[_7] 4056 N— 512
D _Total \—508 \—510
Esv| EID [Total
0 1 6
0 2 12 7516
1 3 56
: 4 50 Masked Masked
——a Masked D_CreditCard || D_Name| D_SSN
1 Z 124 EID| Value EID{Value| EID| Value
- 114000 0000 0000 0001|| 1]|ZXA 11100 001 001
\506 518 2(4000 0000 0000 0002|__ A UHG 2]100 001 .'J?
Yl 3|4000 0000 0000 0003]| 3/ KJW || 3[100 001 003
D_TrxDate 4[5000 0000 0000 0001 :g'E. 4[100 001 004
EID|Value X Value 55000 0000 0OCO 0002 NBD || 51100 001 005
1120121212 120131212 _Slﬁ 6: 0 :3: 3:6
2|20121214 (20131214 7[JHR || 7[100 001 007
3|120121215(20131215
_—514 Bill Table 514— Line item Table
RSV/| | TrxDate[Custid[Billld [Total[CreditCard RSV Billid|ProductiD |Qte
0 1 3 1 7 5 0 1 1 4
0 1 6 2 5 1 0 1 5 2
0 1 5| 3] 1 4 o2 3T 3
0 2 6 4 4 1 0 > 2 >
1 2 4 5 3 3
0 3 1 6] 2 0 0| 3 4] 1
1 3 4 7 6 3 0 4 31 3
Customer Table Product Table 1 5 2] 2
RSV||Custid|Name|City|SSN| |RSV|Productld|Price 1 5 4] 2
1 1 6] 4] 1 0 1 4 1 5 5 1
g 2 o2 8 1 25 o o 4] 2
i 3 3 5
»! 4: ; 4 g 1 4 3 1 7 21 3
3 e
. . N—
~514 ' 514

FIG. 5A

U.S. Patent

Jan. 12, 2016 Sheet 8 of 11 US 9,235,496 B2
520
il
Bill
TrxDate |Custlid | RBillld | Total CreditCard
20131214 187 4054 56 5000 0001 0000 0001
20131215 187 4056 84 5000 0001 0000 0001
Lineitem Product

Billld | ProductiD | Qte Productid Price

4054 P101 2 P101 21

4054 P103 2 P103 (4]

4054 P104 1 P104 _ 2

4056 P101 4

Customer
Custid Name | City 88N
12 POE Paris 100 001 006
187 ZXA Paris 100 001 001
FIG. 5B

U.S. Patent Jan. 12, 2016 Sheet 9 of 11 US 9,235,496 B2

602
Receive reguest to browse testdata |
definitions
\ 4
0 . oga 694
Retrieve test data definitions from J

inventory store for display

\ 4

Receive a selection of a two or more test | 608
dats definitions and a combination
operator

\ 4

Apply combination operator on entily 508
seleclion maps included in the selected |
test data definitions to generate combined
selection maps

\ 4

Store combined selection maps asanew
test data definition in the inventory store

612
Apply combined selection map to tablesto .

exiract test data

FiG. 6

US 9,235,496 B2

Sheet 10 of 11

Jan. 12, 2016

U.S. Patent

V.°Old

g9 6'¢ | doigdor| v1€0CL0C
g9 0'6 _|Z8old 8or| £0202102 oL g9 6'¢ | soigs8or| 2110z1l02
ozi1g 10] | Jojesado ajeq 9z18 10] | J03ea3dO ajeq
607 uoinosexy 601 uonnosoxy
JBIA |+
uoljewiojsuel] ejeq 802 — sjeaxil a
. " uopjewJojsuel] ejeq
0
0 L 0 - .
, , , ”))
“ m .F.) 0)
0 0 1]
b 0 L 80§ 9 06— as—1
b 0 0 0 0 0
>|mm_ \S3| AS3 AS3 AS3 AS3
[ansno"a | anng a | | anenpoid—a | ansno”a | anmg—a | | anenpoid @
urewoq bBuiaug urewoq bBuiaug
sjoejuy sjoeluy
Jeoh | Aq peby eleqg o
sued 0G uey Jsjeauo sl (|ig [ej0L ANV sued
10 YJOA MBN JO [Banuoly AlID yim pajeloosse 1O YJOA MBN JO [BaLjUOIN A)ID Yim pajeioosse
Aposaipul Jo Apos.aiqg elep ||e 10eqx3 o Aposaipul Jo Aposuiqg Blep ||e 10edjxg o
uonduosaqg uonduosag
zolg 9or Jojeald o|g eor Jojeald
210Z £0 o4 :9jeq uoneain cLoz 2l uer :9jeq uoneaid
€183l ‘dweN 1S3l ‘oweN
0L — 90, 20, —

c0S

U.S. Patent Jan. 12,2016

Sheet 11 of 11

US 9,235,496 B2

Driving Domain

| D_ProductID |

ESV
0

i [€3]

e

ESV

3 [t | e | £ mel] £33

ESV

lnch]| macBl | ancke| €553 o | SH)

ESV

P Y Y LY

[BN L]

sl (o= lo
~.J
——d
N

(=

ES

sl o= | olo|<

ESV

Py Y P MEN Y Y Y
ﬂ
.
D

FIG. 7B

US 9,235,496 B2

1
DOMAIN CENTRIC TEST DATA
GENERATION

BACKGROUND

1. Field of Disclosure

The disclosure generally relates to testing database appli-
cations, and in particular to domain centric test data genera-
tion.

2. Background Information

When testing an application that accesses and manipulates
data in database, it is beneficial to generate test data that has
characteristics of real data to test the various features of the
application. In some testing environments, test data is gener-
ated manually by creating fake data sets as the need arises. In
other testing environments, existing live test data from a
database is selected every time test data is needed for testing
a particular feature of the application. In both environments,
the test data generation process is repetitive and labor inten-
sive. Further, using live data for testing purposes requires that
the test development engineer to have access to the data in the
database. Database applications often handle sensitive user or
enterprise data, and exposing such data to non-essential third
parties, such as test development engineers, is highly unde-
sirable.

SUMMARY

A test data server is configured to extract automatically test
data from a database. Data in the database is organized into
data domains. A data domain corresponds to one or more
columns in a table within the database and includes, for each
unique value in the designated column(s), a corresponding
unique entity identifier; thus a given table can be associated
with multiple data domains, each having different designated
columns, and thereby different sets of unique values therein.
In one aspect, the test data server receives a test data query
that specifies a selection parameter and identifies a data
domain associated with the selection parameter. The test data
server generates an entity selection map that identifies one or
more entity identifiers in the data domain that satisfy the
selection parameter. Based on the entity selection map, the
test data server generates a test data definition associated with
the test data query. The test data definition identifies test data
in the database associated with the one or more entity identi-
fiers. The test data server executes the test data definition to
extract the test data that satisfies the test data query. The test
data definition may be persistent so that the definition may be
executed again at a different time to generate the test data.
Further, test data definitions associated with different test data
queries may be combined, and the combined definitions may
be executed to generate test data.

In one embodiment, a test data server includes a definition
generation module, a test data extraction module, and a test
data manipulation module. The definition generation module
is configured to receive as input a test data query that speci-
fies, among other information, a set of test data selection
parameters, and generate a test data definition that identifies
values in the domains associated with the selection param-
eters that satisfy the selection parameters. The definition gen-
eration module stores test data definitions in a test data inven-
tory. The test data extraction module is configured to execute
test data definitions stored in the test data inventory and
extract test data from the database based on the definitions,
and is one means for performing this function. In addition, the
test data manipulation module is configured to combine mul-
tiple test data definitions stored in the test data inventory by

10

20

25

30

40

45

50

55

60

65

2

applying combination functions, such as union and intersec-
tion, on the definitions. The combined test data definition may
be executed by the test data extraction module to extract test
data associated with multiple selections parameters from the
database.

With the techniques described herein, test data definitions
generated once may be executed repetitively to generate test
data that satisfies test data queries provided by test develop-
ment engineers in the past. This eliminates the overhead of
repeatedly creating and processing the same test data queries
to generate the same types of test data. Further, being able to
combine test data definitions generated for different test data
queries allows test development engineers to build on previ-
ously extracted test data and test different combinations of
features of a given application.

The features and advantages described in the specification
are not all inclusive and, in particular, many additional fea-
tures and advantages will be apparent to one of ordinary skill
in the art in view of the drawings, specification, and claims.
Moreover, it should be noted that the language used in the
specification has been principally selected for readability and
instructional purposes, and may not have been selected to
delineate or circumscribe the inventive subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is ahigh-level block diagram of a computing system
for generating test data according to one embodiment.

FIG. 2A illustrates exemplary tables in the database
according to one embodiment.

FIG. 2B illustrates domain data structures stored in the
domain metadata and associated with the tables illustrated in
FIG. 2A according to one embodiment.

FIG. 3 is a flow diagram illustrating steps of a method for
generating test data according to one embodiment.

FIG. 4A illustrates an exemplary test data query received
by the definition generation module according to one embodi-
ment.

FIG. 4B illustrates the test data extracted from the database
based on the test data query of FIG. 4A according to one
embodiment.

FIG. 5A illustrates an exemplary test data query and the
resulting entity selection maps according to one embodiment.

FIG. 5B illustrates the test data 520 extracted from the
database 102 based on the test data query of FIG. 5A accord-
ing to one embodiment.

FIG. 6 is a flow diagram illustrating steps performed by the
test data manipulation module for combining test data defi-
nitions according to one embodiment.

FIG. 7A illustrates an exemplary display of test data defi-
nition object and test data definition object according to one
embodiment.

FIG. 7B illustrates an exemplary combination of the driv-
ing entity selection maps included in the test data definition
object and the test data definition object according to one
embodiment.

DETAILED DESCRIPTION

System Architecture

FIG. 1 is ahigh-level block diagram of a computing system
100 for generating test data according to one embodiment.
The system 100 includes a database 102, domain metadata
104, a test data server 106, and test data inventory 114. The
system 100 can be implemented in a database management
system (DBMS) for any type of database model, including
relational, hierarchical, attribute-value, object, network,

US 9,235,496 B2

3

semantic, graph, and so forth. The system 100 may be imple-
mented using a single computer, or a network of computers,
including cloud-based computer implementations. The com-
puters are preferably server class computers including one or
more high-performance CPUs and 1G or more of main
memory, as well as 500 Gb to 2 Tb of computer readable,
persistent storage, and running an operating system such as
LINUX or variants thereof. The operations of the system 100
as described herein can be controlled through a combination
of hardware and computer programs installed in computer
storage and executed by the processors of such servers to
perform the functions described herein of the test data server
106, database 102, domain metadata 104, and test data inven-
tory 114. The system 100 includes other hardware elements
necessary for the operations described here, including net-
work interfaces and protocols, input devices for data entry,
and output devices for display, printing, or other presentations
of data, but which are not shown here in order to avoid
obscuring the relevant details of the embodiments.

The database 102 stores data associated with one or more
applications that access and operate on the data. According to
one embodiment using a relational database model, the data-
base 102 is organized as a series of tables, each table repre-
senting a particular entity type or operation type, and having
one or more columns defining fields (equivalently, dimen-
sions or attributes) of the data, and one or more rows storing
instances data corresponding to the entity or operation type.
For example, data related to the entity type “Customers” may
be stored in the “Customer Information” table, and data
related to the operation type “Purchases” may be stored in the
“Purchase History” table.

Data in the database 102 is stored in a compact domain
representation. Each unique column in the series of tables is
associated with a different domain that is represented by a
domain data structure stored in domain metadata 104. A
domain data structure representing a given domain associated
with a given column stores all the unique values correspond-
ing to the column. Each unique value in the domain data
structure is associated with an entity identifier, and the corre-
sponding column in the database 102 stores in each of its rows
the entity identifiers associated with the values for these rows,
instead of the actual values.

The domain metadata 104 stores a domain category for
each domain. A domain category indicates how data associ-
ated with the domain may be processed during data extrac-
tion. A particular domain may be categorized as a “sensitive”
domain that is associated with sensitive data that may need to
be masked during data extraction. In one embodiment, the
domain data structure representing a sensitive domain stores
a masking function that is executed to mask the sensitive data
during data extraction.

Alternatively, a particular domain may be categorized as a
“regular” domain that is associated with data that may be
transformed during data extraction. Similarly, a particular
domain may be categorized as a “transformation” domain
that is associated with data that may be used to perform
transformations during data extraction. Such data may
include time and date data.

In addition, a particular domain may be categorized as a
“driving” domain that is used for data subsetting during data
extraction, as discussed below. Two or more columns in dif-
ferent tables in the database 102 may be associated with the
same driving domain. One of the columns associated with a
driving domain is a primary column and the remaining col-
umns are linked to the primary column. Entity identifiers
included in the domain data structure representing the driving
domain are used in both columns.

10

15

20

25

30

35

40

45

50

55

60

65

4

As an example, assume that the “Customer Information”
table includes a “Zip Code” column and six rows, each row
corresponding to a different user. The “Zip Code” column is
associated with a “Zip Code” domain represented by a
domain data structure. The domain data structure includes all
the unique values corresponding to the “Zip Code” column.
Each of the unique values included in the “Zip Code” domain
data structure is associated with a different entity identifier.
Consequently, the “Zip Code” column in each row of the
“User Information” table stores the entity identifier associ-
ated with the relevant unique value instead of the actual value.
Table 1 shows an example of the unique values included in the
“Zip Code” domain data structure and Table 2 shows how
those values are represented in the “Customer Information”
table, using the entity identifiers corresponding to the zip
code values, rather than the zip code values themselves.

TABLE 1

Zip Code Domain Data Structure

Zip Code Entity ID Zip Code Value

0 02139
1 95054
2 94041
3 17310

TABLE 2

Use of Entity Identifiers in Customer Information Table

Customer ID Zip Code Entity ID

432
1277
2136
3490
4879
5788

—_ WO =

FIG. 2A illustrates exemplary tables in the database 102
according to one embodiment. As shown, the database 102
includes the customer table 202, the bill table 204, the line
item table 206, and the product table 208. The customer table
includes a primary column, customer ID 210, that is linked to
the secondary column, customer ID 212, in the bill table 204.
Thebill table 204 includes a primary column, bill ID 214, that
is linked to the secondary column, bill ID 216, in the line item
table 206. The product table 208 includes a primary column,
product ID 220, that is linked to the secondary column, prod-
uct ID 218, in line item table 206. Each cell in the different
tables includes an entity identifier associated with a value
stored in a domain data structure. The domain data structure
associated with each table is shown in FIG. 2B and described
below.

FIG. 2B illustrates domain data structures 222 stored in the
domain metadata 104 and associated with the tables illus-
trated in FIG. 2A according to one embodiment. As shown,
the domain data structures 222 include a different domain
data structure associated with each unique column in the
tables illustrated in FIG. 2A. The driving domain data struc-
tures 226 are each associated with a primary column illus-
trated in FIG. 2A.

Each domain data structure stored in the domain metadata
104 includes a column of unique values and a column of
entity identifiers associated with the unique values. For
example, the city domain data structure 224 is associated with
the “City” column in the customer table 202 of FIG. 2A. The

US 9,235,496 B2

5

city domain data structure 224 includes a column of unique
city values, e.g., “London,” and a column of associated entity
identifiers, e.g., “1” associated with “London.” The entity
identifiers included in the “City” column in the customer
table 202 of FIG. 2A correspond to the city values stored in
the city domain data structure 224.

Data in the database 102 may be used for testing various
functions exposed by applications that rely on the data. The
test data server 106 extracts such test data from the database
102 based on selection parameters provided by test develop-
ment engineers or generated automatically based on the
application(s) being tested. Although only one test data server
106 is illustrated, the computing environment 100 may
include multiple instances of the server.

Extracting Test Data from Database

In operation, the test data server 106 receives a test data
query that specifies selection parameters for selecting test
data from the database 102, and any transformation opera-
tions to be performed on the test data according to one
embodiment. The selection parameters specify different
parameters for selecting test data, where each parameter is
associated with a domain represented by a domain data struc-
ture stored in the domain metadata 104. For example, the test
data selection parameters may include the zip code parameter
“9%* > specifying any zip code having 9 as the leading digit.
The zip code parameter is associated with the “Zip Code”
domain, for example as represented by the “Zip Code”
domain data structure of Table 1 above. The test data selection
parameters may also specify how different parameters asso-
ciated with the same domain are to be combined through
Boolean operations, such as conjunction, disjunction and
negation.

The test data server 106 identifies the domains associated
with the selection parameters and traverses the tables in the
database 102 based on the identified domains to extract test
data that satisfies the selection parameters. The test data
server 106 optionally performs transformation operations,
such as selects, joins, masks and filters, specified by the test
data query on the extracted data. In addition, the test data
server 106 stores the identified domains so that the extraction
of test data that satisfies the selection parameters can be
performed repetitively without reevaluating the test data
query each time. The following discussion describes the
operations of the test data server 106 in detail.

The test data server 106 includes a definition generation
module 108, a test data extraction module 116, and a test data
manipulation module 122, according to one embodiment. As
will become apparent, the various data processing operations
performed by the test data server 106 and its modules are
sufficiently complex and time consuming as to require the
operation of a computer system, and cannot be performed in
the human mind by mental steps alone.

The definition generation module 108 is configured to
receive as input a test data query that specifies, among other
information, a set of test data selection parameters, and gen-
erate a test data definition that identifies values in the domains
associated with the selection parameters that satisfy the selec-
tion parameters, and is one means for performing this func-
tion. The definition generation module 108 includes a domain
identifier 110 and an entity selector 112 that operate in con-
junction to generate the test data definition corresponding to
the test data selection parameters. The definition generation
module 108 stores test data definitions in the test data inven-
tory 114.

The test data extraction module 116 is configured to
execute test data definitions stored in the test data inventory
114 and extract test data from the database 102 based on the

5

10

15

20

25

30

35

40

45

50

55

60

65

6

definitions, and is one means for performing this function. A
test data definition stored in the test data inventory 114 may be
individually executed by the test data extraction module 116.
In addition, the test data manipulation module 122 is config-
ured to combine multiple test data definitions stored in the test
data inventory 114 by applying combination functions, such
as union and intersection, on the definitions, and is one means
for performing this function. The combined test data defini-
tion may be executed by the test data extraction module 116
to extract test data associated with multiple selections param-
eters from the database 102.

FIG. 3 is a flow diagram illustrating steps of a method for
generating test data according to one embodiment. The steps
may be performed, for example, by the various modules
within the test data server 106. In some implementations, the
steps are performed in an order other than the order presented
in FIG. 3, and in other implementations, additional or alter-
native steps may be performed.

The method begins by the definition generation module
108 in the test data server 106 receiving 302 a test data query
that specifies selection parameters for selecting test data from
the database 102 and any transformation operations to be
performed on the test data. FIG. 4A illustrates an exemplary
test data query 402 received by the definition generation
module 108 according to one embodiment. The test data
query 402 specifies selection parameters related to the “City”
column in the customer table 202 of FIG. 2A. Specifically, the
test data query specifies that any data associated with the city
“Montreal,” “New York,” or “Paris” should be extracted.

Referring back to FIG. 3, in the next step, the domain
identifier 110 in the definition generation module 108 identi-
fies 304 all the domains associated with the selection param-
eters. With respect to test data query 402 of FIG. 4A, the
domain identifier 110 identifies the city domain data structure
224 as being associated with the selection parameters. In one
embodiment, the test data server 106 identifies the domains
by parsing the test data query 402 and matching parsed key-
words from the query against domain names stored in the
domain metadata 104. In one embodiment, the test data selec-
tion parameters are provided in a particular query format, and
the domain identifier 110 is configured with a parsing mecha-
nism specific to the query format.

Referring back to FIG. 3, the entity selector 112 next
selects 306 entity identifiers in each of the domains that
satisfy the test data selection parameters. More specifically,
for adomain, the entity selector evaluates each value included
in the associated domain data structure to determine whether
the value satisfies the selection parameter(s) associated with
the domain. If the value satisfies the selection parameter(s),
then the entity identifier corresponding to the parameter is
selected. With respect to test data query 402 of FIG. 4A, the
entity identifiers 2, 3, and 4 in the domain data structure 224
are selected as the corresponding values satisfy the selection
parameters “Montreal,” “New York,” and “Paris.”

Referring back to FIG. 3, the entity selector 112 generates
307 a test data definition associated with the test data query
based on the selected entity identifiers. Specifically, to gen-
erate the test data definition, the entity selector 112 first
generates 308 primary entity selection map(s) based on the
selected entity identifiers. Each primary entity selection map
corresponds to a domain and identifies all the values in the
domain that satisty the selection parameter(s). The primary
entity selection map may be any associative data structure
including but not limited to a bitmap, hash table, trie, etc. In
one embodiment, the primary entity selection map is a bitmap
that stores a bit sequence corresponding to the set of entity
identifiers in the domain. If an entity identifier in the domain

US 9,235,496 B2

7

is selected, then the bit corresponding to the entity identifier is
set to “1.” Conversely, if the entity identifier is not selected,
then the bit corresponding to the entity identifier is set to “0.”
With respect to test data query 402 of FIG. 4A, the entity
selector 112 generates the primary entity selection map 404
that identifies entity identifiers in the city domain data struc-
ture 224 that satisfy the selection parameters specified by the
test data query 402. As shown in example of the figure, the
map 404 comprises a bit map [0,1,1,1].

Next, the entity selector 112 applies 310 each primary
entity selection map corresponding to a domain to the table in
the database 102 that includes a column associated with the
domain. The application of each primary entity selection map
results in a row selection map that identifies each row in the
table that includes an entity identifier that satisfies the selec-
tion parameter(s). The row selection map may be any asso-
ciative data structure including but not limited to a bitmap,
hash table, trie, etc. In one embodiment, the row selection
map is a bitmap that stores a bit corresponding to each row in
the table. If a row includes an entity identifier that satisfies the
selection parameter(s), then the bit corresponding to the row
is set to “1.” Conversely, if the row does not include an entity
identifier that satisfies the selection parameter(s), then the bit
corresponding to the row is set to “0.” With respect to test data
query 402 of FIG. 4A, the entity selector 112 applies the
primary entity selection map 404 to the customer table 202 to
generate the row selection map 416. The row selection map
416 identifies each row in the customer table 202 that includes
an entity identifier that satisfies the selection parameters
“Montreal,” “New York,” and ‘“Paris.”

Referring back to FIG. 3, the entity selector 112 next gen-
erates 312 driving entity selection maps based on the rows
identified by the row selection maps. Specifically, for each
row selection map, the entity selector 112 identifies a primary
column in the table, i.e., a column associated with a driving
domain, and generates a driving entity selection map based on
the rows identified in the row selection map. The driving
entity selection map identifies each entity identifier in the
driving domain that is associated with a value included in at
least one of the identified rows. The driving entity selection
map may be any associative data structure including but not
limited to a bitmap, hash table, trie, etc.

The entity selector 112 also analyzes the table to determine
whether the table includes a secondary column associated
with a different driving domain. If the table includes such a
column, then the entity selector 112 generates another driving
entity selection map that identifies all the values in the difter-
ent driving domain that are included in the rows identified by
the row selection map. The entity selector 112 performs the
process of identifying driving domains and traversing the
different tables in the database 102 to generate driving entity
selection maps and row selection maps until all relevant tables
are traversed.

In cases where the test data selection parameters are asso-
ciated with two or more domains, the application of the pri-
mary entity selection maps may result in two or more driving
entity selection maps associated with the same driving
domain. In such cases, the driving entity selection maps are
combined based on the combination operator provided by the
test data selection parameters. For example, the test data
selection parameters may include the city selection parameter
“San Francisco™ and the zip code selection parameter “9* . In
this case, the test data query also specifies that the selection
parameters are to be combined via an “AND” combination
operator. The combination operator is applied to the two or
more driving entity selection maps to generate a single driv-
ing entity selection map associated with the driving domain.

10

15

20

25

30

35

40

45

50

55

60

65

8

With respect to test data query 402 of FIG. 4A, the entity
selector 112 identifies the “CustID” column in the customer
table 202 as a primary column in the table associated with the
row selection map 416. The entity selector 112 then generates
the driving entity selection map 406 associated with the “Cus-
tID” driving domain. The driving entity selection map 406
identifies each entity identifier in the “CustID” driving
domain that is associated with a value included in at least one
of'the rows identified by the row selection map 416. The entity
selector 112 performs the process of identifying driving
domains and traversing the different tables in the database
102 to generate the additional driving entity selection maps
408 and 410. The driving entity selection maps 406, 408, and
410 identity entity identifiers in the various driving domain
data structures 226 that satisfy the selection parameters.

The entity selector 112 creates 314 a test data definition
object for storage in the test data inventory 114. The test data
definition object includes the driving entity selection maps
generated by the entity selector 112, the test data selection
parameters and any transformation operations specified by
the test data query received by the definition generation mod-
ule 108. The test data definition object optionally includes
any additional information provided the test data query, such
as the name of the query creator, a name for the query, and a
name of the application for which the test data is being gen-
erated.

To extract test data from the database 102, the test data
extraction module 116 executes 314 the test data definition by
applying each driving entity selection map(s) corresponding
to a driving domain to a table that includes the primary col-
umn associated with the driving domain. The row selection
maps resulting from the application identify all the rows in the
different tables that include data satisfying the test data selec-
tion parameters.

More specifically, a transformation operator 118 and a data
extractor 120 included in the test data extraction module 116
operate in conjunction to extract test data based on the test
data definition. The transformation operator 118 identifies
transformation operations included in the test data definition
object and performs those operations on the values in the
relevant the domain data structures. A transformation opera-
tion specifies a particular domain and, when executed on the
values of the domain, transforms the values according to a
particular function. The transformation may be necessary to
mask sensitive information, such as customers’ personal or
billing information, or to age data, such as aging transaction
dates by a specific time period, to expand the testing scope.

To perform the transformation operation specified by a test
data definition object, the transformation operator 118 ana-
lyzes the transformation operation in one embodiment to
determine the domain associated with the operation. The
transformation operator 118 retrieves the domain data struc-
ture associated with the domain from the domain metadata
104 and applies the transformation operation on the domain
data structure to generate a transformed domain data struc-
ture. In one embodiment, the transformation operation is a
masking operation, where the masking function used in the
masking operation is associated with the domain and
retrieved from the domain metadata 104. The application of
the transformation operation involves application of the
transformation to each value included in the domain data
structure to generate a transformed value. The transformation
operator 118 stores the transformed domain data structure in
the domain metadata 104 and associates the transformed
domain data structure with the test data definition object.

The data extractor 120 extracts test data from the database
102 based on the driving entity selection maps stored in a test

US 9,235,496 B2

9

data definition object according to one embodiment. Specifi-
cally, the data extractor 120 applies each driving entity selec-
tion map to the table that includes the primary column asso-
ciated with the driving domain corresponding to the selection
map. The application of the driving entity selection maps
results in a set of row selection maps. Each row selection map
is associated with a different table and identifies a set of rows
in the table that each satisfies the test data selection param-
eters included in the test data definition object.

For each row selection map, the data extractor 120 extracts
all the rows identified by the map into a test data table. The
data extractor 120 then replaces the entity identifiers stored in
the different rows in the test data tables with the associated
values stored in the domain data structure. Alternatively, if the
domain data structure has been transformed by the transfor-
mation operator 118, then the data extractor 120 replaces the
entity identifiers in the test data tables with the values stored
in the transformed domain data structure. The test data tables
may be presented to a tester for testing an application or may
be stored in the test data inventory 114 in association with the
test data definition object.

With respect to test data query 402 of FIG. 4 A, the test data
extraction module 116 applies each driving entity selection
map 406, 408, and 410 to the table that includes the primary
column associated with the driving domain corresponding to
the selection map. The application of the driving entity selec-
tion maps results in a set of row selection maps 412-418. Each
row selection map identifies a set of rows in the associated
table that each satisfies the test data selection parameters. The
test data extraction module 116 applies the set of row selec-
tion maps 412-418 to the associated tables in the database 102
to extract the test data 420 illustrated in FIG. 4B.

FIG. 5A illustrates an exemplary test data query 502 and
the resulting entity selection maps according to one embodi-
ment. The test data query 502 specifies selection parameters
related to the “City” column in the customer table 202 and the
“Total” column in the bill table 204. The test data query 502
also specifies that, when test data is extracted, sensitive data
should be masked and the data should be aged by a year.

The definition generation module 108 operates on the
selection parameters of the test data query 502 to generate the
primary entity selection maps 504 and 506 and the driving
entity selection maps 508, 510, and 512. The primary entity
selection maps 504 and 506 identify entity identifiers in the
city domain data structure 224 and the total domain data
structure that satisfy the selection parameters specified by the
test data query 502. Similarly, the driving entity selection
maps 508, 510, and 512 identify entity identifiers in the vari-
ous driving domain data structures 226 that satisfy the selec-
tion parameters. The driving entity selection maps 508, 510,
and 512 are included in the test data definition associated with
the test data query 502 and stored in the test data inventory
114.

The test data extraction module 116 applies each driving
entity selection map 508, 510, and 512 to the table that
includes the primary column associated with the driving
domain corresponding to the selection map. The application
of the driving entity selection maps results in a set of row
selection maps 514. Each row selection map 514 identifies a
set of rows in the associated table that each satisfies the test
data selection parameters.

In addition, the test data extraction module 116 performs
the masking and data aging transformations specified by the
test data query 502. Specifically, the test data extraction mod-
ule 116 applies a masking transformation operation to the
domain data structures associated with sensitive data to gen-
erate the masked domain data structures 516. In addition, the

10

15

20

25

30

35

40

45

50

55

60

65

10

test data extraction module 116 applies an aging transforma-
tion operation on the transaction date domain data structure to
generate the aged transaction date data structure 518.

FIG. 5B illustrates the test data 520 extracted from the
database 102 based on the test data query 502 of FIG. 5A
according to one embodiment. The test data extraction mod-
ule 116 applies each driving entity selection map 508, 510,
and 512 to the table that includes the primary column asso-
ciated with the driving domain corresponding to the selection
map. The application of the driving entity selection maps
results in a set of row selection maps 514. Each row selection
map 514 identifies a set of rows in the associated table that
each satisfies the test data selection parameters. When replac-
ing entity identifiers included in the rows with associated
values, the test data extraction module 116 uses the values in
the masked domain data structures 516 and the aged transac-
tion date data structure 518 instead of the untransformed
domain data structures stored in the domain metadata 104.
Combining Test Data Definitions

The test data manipulation module 122 is configured to
enable test development engineers to browse the test data
definition objects stored in the test data inventory 114 and
select definitions for generating test data, and is one means for
performing this function. The test data manipulation module
122 includes an inventory browser 124 and an entity map
operator 126. The inventory browser 124 provides a user
interface that allows testers and other types of users to browse
test data definition objects that were previously created. The
user interface displays the test data selection parameters, the
entity maps and any other information included in a given test
data definition object. For a given test data definition object,
the user interface provided by the inventory browser 124 may
also display an execution log indicating when the test data
definition object was used to extract test data and may option-
ally display the extracted test data.

The inventory browser 124 also enables testers to select test
data definition objects for execution by the test data extraction
module 116 to extract test data. When a tester selects two or
more test data definition objects, the inventory browser
enables the tester to provide an combination operator for
combining the driving entity selection maps included in the
test data definition objects. The combination operator may be
one of a series of set functions including, but not limited to, a
union operator, an intersection operator, a symmetric differ-
ence operator, an absolute complement operator, and a
complement operator.

The entity map operator 126 receives the selection of the
test data definition objects and the combination operator and
combines the entity selection maps included in the test data
definition objects based on the combination operator accord-
ing to one embodiment. Specifically, the entity map operator
126 performs the set operation specified by the combination
operator on each group of entity selection maps that are
associated with the same driving domain. The resulting entity
selection map identifies the entity identifiers that satisty the
test data selection parameters included in the test data defi-
nition objects and combined according to the combination
operator. The entity map operator 126 may create a new test
data definition object based on the resulting entity selection
map and store the test data definition object in the test data
inventory 114. The test data extraction module 116 may pro-
cess the new test data definition object to extract test data in
the same manner as discussed above.

FIG. 6 is a flow diagram illustrating steps performed by the
test data manipulation module 122 for combining test data
definitions according to one embodiment. In some implemen-
tations, the steps are performed in an order other than the

US 9,235,496 B2

11

order presented in FIG. 6, and in other implementations,
additional or alternative steps may be performed.

The method begins by the test data manipulation module
122 receiving 602 a request to browse test data definitions
stored in the test data inventory 114. The test data server 106
retrieves 604 test data definitions from the test data inventory
114 for display. In one embodiment, the test data server 106
provides a user interface that displays the test data selection
parameters, the entity maps, and any other information
included in a each test data definition.

The test data manipulation module 122 receives 606 a
selection of two or more test data definitions and an combi-
nation operator for combining the driving entity selection
maps included in the test data definition objects. The combi-
nation operator may be one of a series of set functions includ-
ing, but not limited to, a union operator, an intersection opera-
tor, a symmetric difference operator, an absolute complement
operator, and a complement operator.

The test data manipulation module 122 applies 608 the
combination operator to the driving entity selection maps
included in the test data definition objects to generate com-
bined selection maps. Specifically, the entity map operator
126 performs the set operation specified by the combination
operator on each group of entity selection maps that are
associated with the same driving domain. The resulting entity
selection map identifies the entity identifiers that satisty the
test data selection parameters included in the test data defi-
nition objects and combined according to the combination
operatotr.

The test data manipulation module 122 optionally stores
610 the combined selection maps as new test data definitions
in the test data inventory 114. The test data extraction module
116 optionally applies 612 the combined selection maps to
tables in the database 102 to extract test data.

FIG. 7A illustrates an exemplary display of test data defi-
nition object 702 and test data definition object 704 according
to one embodiment. The test data definition object 702 is
associated with the test data query 502 of FIG. 5A, and the test
data definition object 704 is associated with the test data
query 402 of FIG. 4A. As shown, the test data definition
object 702 includes descriptive information about the test
data definition, such as the name and the creation date. The
test data definition object 702 also includes the associated test
data query 502, the driving entity selection maps 508, 510,
and 512 and the aging transformation. The test data definition
object 702 includes an execution log 710 that indicates when
the test data definition object was executed to extract test data
from the database 102.

FIG. 7B illustrates an exemplary combination of the driv-
ing entity selection maps included in the test data definition
object 702 and the test data definition object 704 according to
one embodiment. In operation, a tester selects the test data
definition object 702 and the test data definition object 704 for
combination and a combination operation. In the illustrated
embodiment, the selected combination operation is a union
operation or a Boolean “OR” operation. The test data manipu-
lation module 122 applies the combination operator to the
driving entity selection maps included in the test data defini-
tion objects 702 and 704 to generate combined selection maps
712, 714, and 716. The test data extraction module 116 may
apply the combined selection maps 712, 714, and 716 to
tables in the database 102 to extract test data. Using combined
selection maps when extracting test data allows test develop-
ment engineers to fine tune the data used for testing. Further,
test development engineers are able to understand and evalu-

10

15

20

25

30

35

40

45

50

55

60

65

12

ate the difference between different test cases when the selec-
tion maps for those test cases are combined using certain
operations.

Additional Configuration Considerations

Some portions of the above description describe the
embodiments in terms of algorithmic processes or operations.
These algorithmic descriptions and representations are com-
monly used by those skilled in the data processing arts to
convey the substance of their work effectively to others
skilled in the art. These operations, while described function-
ally, computationally, or logically, are understood to be
implemented by computer programs comprising instructions
for execution by a processor or equivalent electrical circuits,
microcode, or the like. Furthermore, it has also proven con-
venient at times, to refer to these arrangements of functional
operations as modules, without loss of generality. The
described operations and their associated modules may be
embodied in software, firmware, hardware, or any combina-
tions thereof.

As used herein, the term “module” refers to computer
program logic utilized to provide the specified functionality.
Thus, a module can be implemented in hardware, firmware,
and/or software. In one embodiment, program modules are
stored on a storage device, loaded into memory, and executed
by a processor. Embodiments of the physical components
described herein can include other and/or different modules
than the ones described here. In addition, the functionality
attributed to the modules can be performed by other or dif-
ferent modules in other embodiments. Moreover, this
description occasionally omits the term “module” for pur-
poses of clarity and convenience.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may com-
prise a general-purpose computer selectively activated or
reconfigured by a computer program stored on a computer
readable medium that can be accessed by the computer. Such
a computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, magnetic-
optical disks, read-only memories (ROMs), random access
memories (RAMs), EPROMs, EEPROMs, magnetic or opti-
cal cards, application specific integrated circuits (ASICs), or
any type of computer-readable storage medium suitable for
storing electronic instructions, and each coupled to a com-
puter system bus. Furthermore, the computers referred to in
the specification may include a single processor or may be
architectures employing multiple processor designs for
increased computing capability.

As used herein any reference to “one embodiment” or “an
embodiment” means that a particular element, feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, method, article, or apparatus that
comprises a list of elements is not necessarily limited to only
those elements but may include other elements not expressly
listed or inherent to such process, method, article, or appara-
tus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
example, a condition A or B is satisfied by any one of the

US 9,235,496 B2

13

following: A is true (or present) and B is false (or not present),
A is false (or not present) and B is true (or present), and both
A and B are true (or present).

In addition, use of the “a” or “an” are employed to describe
elements and components of the embodiments herein. This is
done merely for convenience and to give a general sense of the
disclosure. This description should be read to include one or
at least one and the singular also includes the plural unless it
is obvious that it is meant otherwise.

Upon reading this disclosure, those of skill in the art will
appreciate still additional alternative structural and functional
designs for a system and a process for generating test data for
testing an application from a database. Thus, while particular
embodiments and applications have been illustrated and
described, it is to be understood that the present invention is
not limited to the precise construction and components dis-
closed herein and that various modifications, changes and
variations which will be apparent to those skilled in the art
may be made in the arrangement, operation and details of the
method and apparatus disclosed herein without departing
from the spirit and scope as defined in the appended claims.

What is claimed is:

1. A method for generating test data for testing an applica-
tion from a database having a table comprising at least one
column, the method comprising:

receiving a test data query that specifies at least one selec-

tion parameter;
identifying a data domain associated with the at least one
selection parameter, the data domain corresponding to a
column in the table and including for each unique value
in the column a corresponding unique entity identifier;

selecting, within the identified data domain, one or more
entity identifiers that correspond to one or more values
satisfying the at least one selection parameter;

automatically generating an entity selection map that
specifies the one or more selected entity identifiers
included in the data domain;

automatically generating a test data definition associated

with the test data query based on the entity selection
map, the test data definition identifying test data in the
database associated with the one or more selected entity
identifiers; and

automatically executing the test data definition to extract

the test data.

2. The method of claim 1, wherein generating the test data
definition comprises:

generating a row selection map associated with the table

based on the entity selection map, the row selection map
identifying a set of rows in the table that each includes a
value corresponding to at least one of the one or more
selected entity identifiers;

identifying a driving domain corresponding to a second

column in the table, the driving domain including for
each unique value in the second column a corresponding
unique entity identifier;

selecting one or more driving entity identifiers in the driv-

ing domain that correspond to values included in the
second column of the set of rows; and

generating a driving map that identifies the one or more

driving entity identifiers.

3. The method of claim 2, wherein the test data definition
includes the driving map, and executing the test data defini-
tion comprises applying the driving map to the table to extract
at least a portion of the test data.

4. The method of claim 2, wherein generating the test data
definition further comprises:

10

15

20

25

30

35

40

45

50

55

60

65

14

determining that a second table in the database includes a
third column that corresponds to the driving domain;
and

generating a second row selection map associated with the
second table based on the driving map, the second row
selection map identifying a second set of rows in the
second table that each includes a value corresponding to
at least one of the driving entity identifiers.

5. The method of claim 4, wherein executing the test data
definition comprises applying the driving map to the second
table to extract at least a portion of the test data.

6. The method of claim 1, further comprising storing the
test data definition in a test data inventory that also stores a
second test data definition associated with a second test data
query.

7. The method of claim 6, further comprising:

receiving a selection of the test data definition, the second
test data definition, and a combination operator;

combining the test data definition and the second test data
definition based on the combination operator to generate
a combined test data definition; and

executing the combined test data definition to extract test
data associated with the test data query and the second
test data query from the database.

8. The method of claim 7, wherein the test definition
includes a set of bitmaps for extracting the test data, the
second test definition includes a second set of bitmaps for
extracting second test data, the combination operation is a set
function, and combining the test definition and the second test
definition comprises performing the set function on the set of
bitmaps and the second set of bitmaps.

9. The method of claim 1, wherein the table comprises a
plurality of columns, each of the plurality of columns corre-
sponding to a different data domain, and further comprising
determining a domain category associated with each data
domain corresponding to a column in the table, the domain
category associated with a particular data domain indicating
how data associated with the domain is to be processed during
test data extraction.

10. The method of claim 1, wherein executing the test data
definition to extract the test data comprises transforming the
data domain such that each entity identifier in the data domain
is associated with a transformed value, and wherein the
extracted test data includes a first transformed value associ-
ated with a first entity identifier included in the one or more
selected entity identifiers.

11. A computer program product having a non-transitory
computer readable storage medium storing executable code
for generating test data for testing an application from a
database having a table comprising at least one column, the
code when executed performs steps comprising:

receiving a test data query that specifies at least one selec-
tion parameter;

identifying a data domain associated with the at least one
selection parameter, the data domain corresponding to a
column in the table and including for each unique value
in the column a corresponding unique entity identifier;

selecting, within the identified data domain, one or more
entity identifiers that correspond to one or more values
satisfying the at least one selection parameter;

automatically generating an entity selection map that iden-
tifies specifies the one or more selected entity identifiers
included in the data domain;

automatically generating a test data definition associated
with the test data query based on the entity selection

US 9,235,496 B2

15

map, the test data definition identifying test data in the
database associated with the one or more selected entity
identifiers; and

automatically executing the test data definition to extract

the test data.

12. The computer program product of claim 11, wherein
generating the test data definition comprises:

generating a row selection map associated with the table

based on the entity selection map, the row selection map
identifying a set of rows in the table that each includes a
value corresponding to at least one of the one or more
selected entity identifiers;

identifying a driving domain corresponding to a second

column in the table, the driving domain including for
each unique value in the second column a corresponding
unique entity identifier;

selecting one or more driving entity identifiers in the driv-

ing domain that correspond to values included in the
second column of the set of rows; and

generating a driving map that identifies the one or more

driving entity identifiers.

13. The computer program product of claim 12, wherein
the test data definition includes the driving map, and execut-
ing the test data definition comprises applying the driving
map to the table to extract at least a portion of the test data.

14. The computer program product of claim 12, wherein
generating the test data definition further comprises:

determining that a second table in the database includes a

third column that corresponds to the driving domain;
and

generating a second row selection map associated with the

second table based on the driving map, the second row
selection map identifying a second set of rows in the
second table that each includes a value corresponding to
at least one of the driving entity identifiers.

15. The computer program product of claim 14, wherein
executing the test data definition comprises applying the driv-
ing map to the second table to extract at least a portion of the
test data.

10

15

20

25

30

35

16

16. The computer program product of claim 11, wherein
the code when executed further performs steps comprising
storing the test data definition in a test data inventory that also
stores a second test data definition associated with a second
test data query.

17. The computer program product of claim 16, wherein
the code when executed further performs steps comprising:

receiving a selection of the test data definition, the second

test data definition, and a combination operator;
combining the test data definition and the second test data
definition based on the combination operator to generate
a combined test data definition; and
executing the combined test data definition to extract test
data associated with the test data query and the second
test data query from the database.

18. The computer program product of claim 17, wherein
the test definition includes a set of bitmaps for extracting the
test data, the second test definition includes a second set of
bitmaps for extracting second test data, the combination
operation is a set function, and combining the test definition
and the second test definition comprises performing the set
function on the set of bitmaps and the second set of bitmaps.

19. The computer program product of claim 11, wherein
the table comprises a plurality of columns, each of the plu-
rality of columns corresponding to a different data domain,
and further comprising determining a domain category asso-
ciated with each data domain corresponding to a column in
the table, the domain category associated with a particular
data domain indicating how data associated with the domain
is to be processed during test data extraction.

20. The computer program product of claim 11, wherein
executing the test data definition to extract the test data com-
prises transforming the data domain such that each entity
identifier in the data domain is associated with a transformed
value, and wherein the extracted test data includes a first
transformed value associated with a first entity identifier
included in the one or more selected entity identifiers.

#* #* #* #* #*

